
// Security Assessment 03.25.2025 - 04.04.2025

Nawa Finance

Coredao

N awa F i n a n c e - C o r e d a o

Prepared by: HALBORN

Last Updated 04/09/2025

Date of Engagement: March 25th, 2025 - April 4th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

3 8

CRITICAL

1

HIGH

5

MEDIUM

4

LOW

5

INFORMATIONAL

2 3

TA B L E O F C O N T E N TS

1. Summary
2. Introduction
3. Assessment summary
4. Test approach and methodology
5. Risk methodology
6. Scope
7. Assessment summary & findings overview
8. Findings & Tech Details

1 0 0%

8.1 Incompatible strategy interface usage breaks registry introspection
8.2 Inconsistent fee deduction logic in swap functions
8.3 Unreliable withdrawal flow and partial fund delivery risk
8.4 Panic fails due to premature pause and removed allowances
8.5 Incomplete access control and inconsistent allowance handling on core liquidity functions
8.6 Strategy upgrade allows incompatible want tokens leading to asset loss
8.7 Zapin does not account for deflationary tokens or transfer fees
8.8 Referrer can be self or overwritten on repeated deposits
8.9 Unsafe direct token transfer
8.10 Earn does not forward funds into active strategy
8.11 Missing reentrancy protection on external call paths
8.12 Unnecessary and unsafe repeated allowance grants without proper revocation
8.13 Missing two-step ownership transfer and unsafe renounceownership
8.14 Adding a vault allows duplicated entries without validation
8.15 Unrestricted strategist assignment can lead to invalid role configuration
8.16 Unreachable and unused pause and panic functionality
8.17 Referrer can be self or overwritten on repeated deposits
8.18 Missing upper bound validation in setrevsharefees
8.19 Rescue allows withdrawal of core strategy asset
8.20 Zero approvaldelay allows immediate strategy upgrade
8.21 Unbounded approve to vault exposes dualcoretoken to external drain
8.22 Unaccounted eth received outside of deposit flow
8.23 Zapin does not validate vault compatibility with lp token
8.24 Missing slippage limit validation in constructor
8.25 Unused state variables increase contract size and reduce clarity
8.26 No price-per-share logic enables yield dilution via 1:1 minting
8.27 Redundant unbonding checks and duplicated withdrawal tracking
8.28 Misleading dev comment on referrer setter function
8.29 Redundant overflow check in touint24
8.30 Confusing withdrawal flag naming and logic
8.31 Misleading comment in harvest regarding lp balance logging
8.32 Unused coretoken variable creates asset type ambiguity
8.33 Unnecessary proposedtime assignment in upgradestrat
8.34 Inconsistent slippage denominator precision across contracts

8.35 Admin functionality not used
8.36 Redundant use of safemath with solidity 0.8.x
8.37 Incorrect withdrawal fallback check can lead to eth transfer failure
8.38 Redundant inheritance and unused fee logic in strategy

1 . S u m m a r y

2. I n t r o d u c t i o n

CoreDAO engaged our security analysis team to conduct a comprehensive security assessment of their smart contract ecosystem. The
primary aim was to meticulously assess the security architecture of the smart contracts to pinpoint vulnerabilities, evaluate existing security
protocols, and offer actionable insights to bolster security and operational efficacy of their smart contract framework. Our assessment was
strictly confined to the smart contracts provided, ensuring a focused and exhaustive analysis of their security features.

3. A s s e s s m e n t S u m m a r y

Our engagement with CoreDAO spanned an 8 day period, during which we dedicated one full-time security engineer equipped with extensive
experience in blockchain security, advanced penetration testing capabilities, and profound knowledge of various blockchain protocols. The
objectives of this assessment were to:

- Verify the correct functionality of smart contract operations.

- Identify potential security vulnerabilities within the smart contracts.

- Provide recommendations to enhance the security and efficiency of the smart contracts.

4. Te s t A p p r o a c h A n d M e t h o d o l o g y

Our testing strategy employed a blend of manual and automated techniques to ensure a thorough evaluation. While manual testing was pivotal
for uncovering logical and implementation flaws, automated testing offered broad code coverage and rapid identification of common
vulnerabilities. The testing process included:

- A detailed examination of the smart contracts' architecture and intended functionality.

- Comprehensive manual code reviews and walkthroughs.

- Functional and connectivity analysis utilizing tools like Solgraph.

- Customized script-based manual testing and testnet deployment using Foundry.

This executive summary encapsulates the pivotal findings and recommendations from our security assessment of CoreDAO smart contract
ecosystem. By addressing the identified issues and implementing the recommended fixes, CoreDAO can significantly boost the security,
reliability, and trustworthiness of its smart contract platform.

5. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors: Reversibility and Scope. These capture
the impact of the vulnerability on the environment as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest security risk. This provides an
objective and accurate rating of the severity of security vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to address the most critical issues in a
timely manner.

5.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

5.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

M ​E

E

E = m ​∏ e

Measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. This metric refers to
smart contract features and functionality, not state. Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

5.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts, assume the contract private key is
available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Scope () Changed (S:C)
Unchanged (S:U)

1.25
1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

C

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Low 2 - 4.4

Informational 0 - 1.9

6. S C O P E

REMEDIAT ION COMMIT ID :

0e6af9c
https://github.com/Nawa-Finance/nawa-core/commit/c2bf2cc658cdd352fdec301d785b6324cf431
a1e0695
8f3d2a7
60b58ec
714bd1e
b4888ee
8927767
e577f61
ed1f784
9752583
a64367b
58c9fd8
df62f48
c969c2b
e5ff358

Out-of-Scope: New features/implementations after the remediation commit IDs.

7. AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

1

HIGH

5

MEDIUM

4

LOW

5

INFORMATIONAL

2 3

https://github.com/Nawa-Finance/nawacore/commit/0e6af9c5eb67f0d54b6f56335b74c71c410de925
https://github.com/Nawa-Finance/nawa-core/commit/c2bf2cc658cdd352fdec301d785b6324cf431
https://github.com/Nawa-Finance/nawa-core/commit/a1e06953b80708d0d622d7b0bcd1013037b66be6
https://github.com/Nawa-Finance/nawa-core/commit/8f3d2a7a0a1e70607baf9849f3f883c71ad9f90f
https://github.com/Nawa-Finance/nawa-core/commit/60b58ec41266d9429673ec54689b607ab6c0bfd5
https://github.com/Nawa-Finance/nawa-core/commit/714bd1ec7e53dbe7404abbd1c956e2d994272c44
https://github.com/Nawa-Finance/nawa-core/commit/b4888eefce8a17e282d4a987bff30a9ef7cd2f34
https://github.com/Nawa-Finance/nawa-core/commit/8927767663351a97a00527651b771361cb5989b0
https://github.com/Nawa-Finance/nawa-core/commit/e577f619d1b67b88d7e1b860ee7567d9a7367a98
https://github.com/Nawa-Finance/nawa-core/commit/ed1f7846252c7209d83a87b65b23499690fcd44c
https://github.com/Nawa-Finance/nawa-core/commit/97525830792abd44c3924f1ee6a1441021df34f1
https://github.com/Nawa-Finance/nawa-core/commit/a64367bf5eaf2ff502e01803dfaae2cb30349c08
https://github.com/Nawa-Finance/nawa-core/commit/58c9fd8245af62cc3e6d2eb09385a2564217e266
https://github.com/Nawa-Finance/nawa-core/commit/df62f48da5b2ecd775f31ce1433da400964de2c0
https://github.com/Nawa-Finance/nawa-core/commit/c969c2b36f3876d528abeaf9ac2a50b841f9f161
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCOMPATIBLE STRATEGY INTERFACE USAGE BREAKS REGISTRY INTROSPECTION CRITICAL SOLVED - 04/07/2025

INCONSISTENT FEE DEDUCTION LOGIC IN SWAP FUNCTIONS HIGH SOLVED - 04/07/2025

UNRELIABLE WITHDRAWAL FLOW AND PARTIAL FUND DELIVERY RISK HIGH SOLVED - 04/07/2025

PANIC FAILS DUE TO PREMATURE PAUSE AND REMOVED ALLOWANCES HIGH SOLVED - 04/07/2025

INCOMPLETE ACCESS CONTROL AND INCONSISTENT ALLOWANCE HANDLING ON
CORE LIQUIDITY FUNCTIONS

HIGH SOLVED - 04/07/2025

STRATEGY UPGRADE ALLOWS INCOMPATIBLE WANT TOKENS LEADING TO ASSET
LOSS

HIGH SOLVED - 04/07/2025

ZAPIN DOES NOT ACCOUNT FOR DEFLATIONARY TOKENS OR TRANSFER FEES MEDIUM SOLVED - 04/07/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

REFERRER CAN BE SELF OR OVERWRITTEN ON REPEATED DEPOSITS MEDIUM SOLVED - 04/07/2025

UNSAFE DIRECT TOKEN TRANSFER MEDIUM SOLVED - 04/07/2025

EARN DOES NOT FORWARD FUNDS INTO ACTIVE STRATEGY MEDIUM PARTIALLY SOLVED - 04/07/2025

MISSING REENTRANCY PROTECTION ON EXTERNAL CALL PATHS LOW SOLVED - 04/07/2025

UNNECESSARY AND UNSAFE REPEATED ALLOWANCE GRANTS WITHOUT PROPER
REVOCATION

LOW SOLVED - 04/07/2025

MISSING TWO-STEP OWNERSHIP TRANSFER AND UNSAFE RENOUNCEOWNERSHIP LOW SOLVED - 04/07/2025

ADDING A VAULT ALLOWS DUPLICATED ENTRIES WITHOUT VALIDATION LOW SOLVED - 04/07/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNRESTRICTED STRATEGIST ASSIGNMENT CAN LEAD TO INVALID ROLE
CONFIGURATION

LOW SOLVED - 04/07/2025

UNREACHABLE AND UNUSED PAUSE AND PANIC FUNCTIONALITY INFORMATIONAL RISK ACCEPTED - 04/07/2025

REFERRER CAN BE SELF OR OVERWRITTEN ON REPEATED DEPOSITS INFORMATIONAL SOLVED - 04/07/2025

MISSING UPPER BOUND VALIDATION IN SETREVSHAREFEES INFORMATIONAL SOLVED - 04/07/2025

RESCUE ALLOWS WITHDRAWAL OF CORE STRATEGY ASSET INFORMATIONAL SOLVED - 04/07/2025

ZERO APPROVALDELAY ALLOWS IMMEDIATE STRATEGY UPGRADE INFORMATIONAL SOLVED - 04/07/2025

UNBOUNDED APPROVE TO VAULT EXPOSES DUALCORETOKEN TO EXTERNAL DRAIN INFORMATIONAL ACKNOWLEDGED - 04/07/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNACCOUNTED ETH RECEIVED OUTSIDE OF DEPOSIT FLOW INFORMATIONAL ACKNOWLEDGED - 04/07/2025

ZAPIN DOES NOT VALIDATE VAULT COMPATIBILITY WITH LP TOKEN INFORMATIONAL ACKNOWLEDGED - 04/07/2025

MISSING SLIPPAGE LIMIT VALIDATION IN CONSTRUCTOR INFORMATIONAL ACKNOWLEDGED - 04/07/2025

UNUSED STATE VARIABLES INCREASE CONTRACT SIZE AND REDUCE CLARITY INFORMATIONAL ACKNOWLEDGED - 04/07/2025

NO PRICE-PER-SHARE LOGIC ENABLES YIELD DILUTION VIA 1:1 MINTING INFORMATIONAL ACKNOWLEDGED - 04/07/2025

REDUNDANT UNBONDING CHECKS AND DUPLICATED WITHDRAWAL TRACKING INFORMATIONAL ACKNOWLEDGED - 04/07/2025

MISLEADING DEV COMMENT ON REFERRER SETTER FUNCTION INFORMATIONAL ACKNOWLEDGED - 04/07/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

REDUNDANT OVERFLOW CHECK IN TOUINT24 INFORMATIONAL ACKNOWLEDGED - 04/07/2025

CONFUSING WITHDRAWAL FLAG NAMING AND LOGIC INFORMATIONAL ACKNOWLEDGED - 04/07/2025

MISLEADING COMMENT IN HARVEST REGARDING LP BALANCE LOGGING INFORMATIONAL ACKNOWLEDGED - 04/07/2025

UNUSED CORETOKEN VARIABLE CREATES ASSET TYPE AMBIGUITY INFORMATIONAL ACKNOWLEDGED - 04/07/2025

UNNECESSARY PROPOSEDTIME ASSIGNMENT IN UPGRADESTRAT INFORMATIONAL ACKNOWLEDGED - 04/07/2025

INCONSISTENT SLIPPAGE DENOMINATOR PRECISION ACROSS CONTRACTS INFORMATIONAL ACKNOWLEDGED - 04/07/2025

ADMIN FUNCTIONALITY NOT USED INFORMATIONAL ACKNOWLEDGED - 04/07/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

REDUNDANT USE OF SAFEMATH WITH SOLIDITY 0.8.X INFORMATIONAL ACKNOWLEDGED - 04/07/2025

INCORRECT WITHDRAWAL FALLBACK CHECK CAN LEAD TO ETH TRANSFER FAILURE INFORMATIONAL ACKNOWLEDGED - 04/07/2025

REDUNDANT INHERITANCE AND UNUSED FEE LOGIC IN STRATEGY INFORMATIONAL ACKNOWLEDGED - 04/07/2025

8 . F I N D I N G S & T EC H D E TA I L S

8 .1 I N C O M PAT I B L E ST R AT EGY I N T E R FAC E U SAG E B R E A KS R EG I ST RY

I N T RO S P EC T I O N

// CRITICAL

Description
In the NawaRegistry contract, the vaultsInfo function relies on the assumption that all registered strategies conform to the
INawaStrategyV2 interface, which includes functions such as wantUnderlyingToken() and revShareToken() .
However, the actual strategies used across the system implement various other interfaces (IStrategy , IDualCoreStrategy , StratManager)
and do not implement the wantUnderlyingToken() or revShareToken() functions. As a result, when vaultsInfo attempts to query strategy
metadata, it will revert at runtime, breaking off-chain integrations, registry queries, or any UI components relying on this data.
This renders the registry introspection logic unreliable and introduces a silent failure risk when new vaults are added—if the strategy does not
conform, the registry will accept it, but then fail when trying to read from it.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (10.0)

Recommendation
Standardize all strategies to implement a common metadata interface like INawaStrategyV2 , or refactor vaultsInfo to dynamically detect
capabilities using try/catch patterns or interface flags. If not all strategies are expected to support the same metadata, the registry should:
1. Validate interface compliance before calling the functions.
2. Fallback to optional metadata fields where appropriate.
3. Maintain a registry version or vault type flag to differentiate strategy implementations.
Alternatively, modify the registry to store static metadata (e.g. revShareToken , underlyingToken) during vault registration to avoid querying
untrusted or incompatible contracts at runtime.

Remediation Comment
SOLVED: Checking if strategy has supported interface, otherwise manually setting revShareToken and wantUnderlyingToken.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N

Remediation Hash
https://github.com/Nawa-Finance/nawacore/commit/0e6af9c5eb67f0d54b6f56335b74c71c410de925

https://github.com/Nawa-Finance/nawacore/commit/0e6af9c5eb67f0d54b6f56335b74c71c410de925

8 . 2 I N C O N S I ST E N T F E E D E D U C T I O N LO G I C I N SWA P F U N C T I O N S

// HIGH

Description
The NawaRouter contract implements protocol-level fees across its swap functions, but inconsistently applies the fee logic based on the swap
type. This misalignment leads to swap failures, slippage inaccuracies, and broken constant-product invariants in AMM pools.
For exact input swaps, such as swapExactTokensForTokens or swapExactETHForTokens , the function calculates the amounts array using the
full amountIn , but then subtracts the fee before transferring tokens to the pair. Since getAmountsOut assumes the full amountIn reaches the
pool, reducing it after the fact leads to insufficient liquidity provisioning, which may result in output values below amountOutMin , failing
slippage checks or producing less than expected tokens.
For exact output swaps, such as swapTokensForExactTokens or swapTokensForExactETH , the required input is calculated using getAmountsIn ,
returning the precise amount the pool needs. However, the contract subtracts the fee from this required amount, leading to an underfunded
pool that cannot fulfill the output target. The fee should be added on top of the required input, not subtracted from it.
This problem extends to SupportingFeeOnTransferTokens variants, where inputs such as msg.value or amountIn are used for swap
expectations, but the fee is deducted after or at the wrong point in logic, breaking the swap flow or producing unintended outcomes.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:M (8.8)

Recommendation
Refactor all swap functions in the NawaRouter contract to consistently apply fee logic based on the swap type:

For exact input swaps, subtract the fee from the input before computing the output.
For exact output swaps, calculate the required input and add the fee on top.
Ensure that TransferHelper calls or ETH wrapping/unwrapping reflect the actual amount sent to the pair, and that all amountOutMin or

amountInMax checks are made based on the post-fee effective input.

This correction guarantees alignment with AMM expectations and preserves slippage guarantees across all routing paths.

Remediation Comment

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:M

SOLVED: Deducting fees in getAmountsOut and getAmountsIn.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/c2bf2cc658cdd352fdec301d785b6324cf431

https://github.com/Nawa-Finance/nawa-core/commit/c2bf2cc658cdd352fdec301d785b6324cf431

8 . 3 U N R E L I A B L E WI T H D R AWA L F LOW A N D PA RT I A L F U N D D E L I V E RY R I S K

// HIGH

Description
The NawaVaultV2 , NawaVaultUpgradable , and NawaVault contracts all share a common withdrawal pattern that is vulnerable to underdelivery
from the strategy. In the _withdraw logic, the user’s entitled withdrawal amount r is computed as:

r r == ((balancebalance(()) ** _shares _shares)) // totalSupply totalSupply;;

If the vault does not hold enough tokens to fulfill this amount (b < r), it attempts to withdraw the difference from the strategy. After the
external call, it determines how much was actually received:

uint256uint256 _diff _diff == balancebalance(())..subsub((bb));;

If the returned amount is less than requested, the vault silently adjusts r to a lower value:

r r == b b..addadd((_diff_diff));;

This behavior introduces several reliability and safety concerns:
1. User Underpayment: The user receives fewer tokens than their calculated share without any visibility or tracking of the shortfall. The logic
assumes it's acceptable to return a lesser amount, but the comment // CHECK THIS correctly flags that this is a potentially dangerous and
non-transparent behavior.
2. Silent Strategy Failure: No validation is performed to ensure the strategy fulfills its obligation. A malfunctioning, misconfigured, or malicious
strategy can underdeliver with no consequences or alert, shifting the burden to the vault and harming user expectations.
3. SafeTransfer Reverts: If the vault still doesn’t hold enough tokens to complete the transfer—even after attempting to pull from the strategy
—the safeTransfer to the user will fail, reverting the transaction. This may lead to stuck withdrawals with no graceful fallback.
This problem is particularly amplified in the BitfluxStrategy , where the withdraw logic intentionally performs:

uint256uint256 amount amount == Math Math..minmin((requestedAmountrequestedAmount,, poolBalance poolBalance));;

This means the strategy may return less than the requested withdrawal, and it leaves it up to the vault to decide how to handle that shortfall.
If the vault doesn’t reject underdelivery or track the deficit, users are silently underpaid or blocked entirely.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:H (8.1)

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:H

Recommendation
Enforce reliable withdrawal mechanics through the following improvements:
1. Require full delivery by default: Revert when the strategy fails to provide the required amount:

requirerequire((_diff _diff >=>= _withdrawAmount _withdrawAmount,, "Strategy underdelivered""Strategy underdelivered"));;

1. Track underdelivery if partial withdrawals are intended: If the design supports partial fulfillment, explicitly track the shortfall per user and
offer a secondary mechanism to claim the remainder later.
2. Make behavior explicit: If partial withdrawals are allowed, document this clearly and ensure the front-end reflects it. Use events to log the
shortfall transparently.
3. In BitfluxStrategy, avoid using Math.min() for withdraw amounts unless the vault supports partial delivery. Instead, use functions like
calculateRemoveLiquidityOneToken to pre-validate the exact amount that the pool will return and ensure that it can fulfill the expected
amount or revert otherwise.
4. Introduce optional withdrawal thresholds: Allow vaults to define a minExpected threshold below which a withdrawal automatically fails,
reducing edge case behavior.
These changes ensure users are not shortchanged due to strategy-level failures and enforce clearer boundaries between the vault's logic and
the responsibilities of the strategy. Without this, the vault operates on an implicit trust model that weakens its guarantees.

Remediation Comment
SOLVED: Improved withdrawal logic to enforce full delivery and track underdelivered amounts. The claimWithdrawalShortfall function allows
claiming underdelivers.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/a1e06953b80708d0d622d7b0bcd1013037b66be6

https://github.com/Nawa-Finance/nawa-core/commit/a1e06953b80708d0d622d7b0bcd1013037b66be6

8 . 4 PA N I C FA I L S D U E TO P R E M AT U R E PAU S E A N D R E M OV E D A L LOWA N C ES

// HIGH

Description
In the BitfluxStrategy contract, the panic() function is designed to execute an emergency exit by withdrawing funds from the pool and
halting strategy operations. However, it calls pause() before performing the withdrawal:

functionfunction panicpanic(()) externalexternal onlyVault onlyVault {{

 pausepause(());;
 removeLiquidityremoveLiquidity(());;

}}

The pause() function invokes _removeAllowances() , which sets token allowances (including for LP tokens) to zero. As a result, when
removeLiquidity() is executed immediately after, the bitfluxPool.removeLiquidityOneToken() call fails, because the pool cannot transfer
the required LP tokens due to the revoked allowance.
This makes the panic() function unusable in practice—it will always revert when attempting to remove liquidity in emergency conditions,
precisely when it is needed most.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:N/Y:N (7.5)

Recommendation
Reorder the operations in panic() to preserve the necessary allowances until after liquidity is withdrawn:

functionfunction panicpanic(()) externalexternal onlyVault onlyVault {{
 removeLiquidityremoveLiquidity(());; // withdraw while allowances are active// withdraw while allowances are active

 pausepause(());; // then revoke allowances// then revoke allowances
}}

This ensures the strategy can successfully exit its positions before disabling further interactions. Alternatively, if revoking allowances pre-
withdrawal is a security requirement, the function must temporarily re-grant them, though this adds unnecessary complexity.
Emergency flows must be reliable and self-contained—ensuring that they don’t rely on assumptions invalidated by earlier steps. This
correction restores panic() 's intended behavior and secures user funds during protocol-wide shutdowns.

Remediation Comment

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:N/Y:N

SOLVED: Modified to preserve allowances before halting operations.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/8f3d2a7a0a1e70607baf9849f3f883c71ad9f90f

https://github.com/Nawa-Finance/nawa-core/commit/8f3d2a7a0a1e70607baf9849f3f883c71ad9f90f

8 . 5 I N C O M P L E T E AC C ES S C O N T RO L A N D I N C O N S I ST E N T A L LOWA N C E H A N D L I N G

O N C O R E L I Q U I D I T Y F U N C T I O N S

// HIGH

Description
In the BitfluxStrategy contract, the deposit function lacks an access control check to ensure that only the vault can trigger it. This
contrasts with the withdraw function, which properly enforces require(msg.sender == vault, ...) . As a result, any external actor can call
deposit() , initiating liquidity operations on the strategy’s behalf and potentially affecting vault accounting.
Furthermore, both addLiquidity and removeLiquidity are public and callable by any address. This introduces several problematic scenarios:

Arbitrary liquidity movements: Any external user can deposit assets into the bitfluxPool by calling addLiquidity or withdraw them via
removeLiquidity , including specifying arbitrary withdrawal amounts.

Broken liquidity flow: A malicious or careless caller can:

Call removeLiquidity() to withdraw LP funds,
Follow up with deposit() or addLiquidity() to return them,
Repeatedly toggle the state of pool exposure, leading to operational unpredictability or external manipulation if pool behavior (e.g. yield,

inflation) reacts to participation duration or timing.

No allowance handling in public liquidity functions: addLiquidity and removeLiquidity do not internally call _giveAllowances , which
can cause revert failures if approvals are not already set. This contradicts the pattern seen in other parts of the strategy and makes direct
function calls unreliable.

The combination of open access, missing token approvals, and missing vault verification leads to a fragile and potentially exploitable design
surface, even if the economic incentive to do so is low.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (7.5)

Recommendation
Harden the liquidity and execution flow with the following changes:
1. Restrict deposit() to the vault with a require(msg.sender == vault) check, aligning it with withdraw().

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N

2. Make addLiquidity() and removeLiquidity() internal or onlyVault if they are meant to be part of vault-controlled flows. If external exposure
is necessary, wrap them with proper authorization.
3. Ensure allowance safety: If these functions remain callable, invoke _giveAllowances() inside them or explicitly require that approvals are
already in place. Consistency is critical to avoid runtime reverts.
4. Protect against liquidity manipulation: If calling addLiquidity() or removeLiquidity() inappropriately could alter yield distributions,
inflation calculations, or harvest logic, enforce stricter control to avoid malicious timing attacks or flash deposit cycles.
These fixes will enforce proper separation of control, improve predictability of the strategy’s asset flow, and reduce surface area for
unintended interactions.

Remediation Comment
SOLVED: Introduced role-based access control and secure allowance checks.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/60b58ec41266d9429673ec54689b607ab6c0bfd5

https://github.com/Nawa-Finance/nawa-core/commit/60b58ec41266d9429673ec54689b607ab6c0bfd5

8 . 6 ST R AT EGY U P G R A D E A L LOWS I N C O M PAT I B L E WA N T TO K E N S L E A D I N G TO

AS S E T LO S S

// HIGH

Description
In NawaVaultV2 , NawaVaultUpgradable , and NawaVault , the proposeStrat and upgradeStrat flow and the setStrategy on SolvVault
contract does not verify that the new strategy’s want() token matches the vault’s current want() token. Although the contract assumes
compatibility by calling strategy.migrate() after transferring the full balance of the old want() to the new strategy, this behavior is not
enforced or validated.
This leads to a critical flaw: if the new strategy operates on a different want() token, and the vault still transfers the previous want()
balance to it, those funds will be locked inside the new strategy with no recovery mechanism—especially since none of the currently deployed
strategies implement custom migrate() logic to handle mismatched tokens.
The vulnerability arises from the implicit assumption that:
1. The new strategy will either operate on the same want token or
2. Implement a custom migrate() function that handles conversion, forwarding, or recovery of the old token.
However, none of the strategies in scope implement a migrate() function with this behavior, violating the assumption and enabling potential
permanent asset loss if a strategy is upgraded to one with a different underlying asset.
This problem is exacerbated by the fact that upgradeStrat :

Calls retireStrat() on the old strategy (to handle cleanup),
Transfers all vault-held want() tokens to the new strategy unconditionally,
Calls migrate() on the new strategy.

If the new strategy uses a different want() token or fails to correctly forward or recover the old one, these funds are permanently stuck.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (7.5)

Recommendation

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N

Introduce a strict compatibility check in the proposeStrat or upgradeStrat function to ensure the new strategy's want() token matches the
current one:

requirerequire((IStrategyIStrategy((_implementation_implementation))..wantwant(()) ==== wantwant(()),, "want mismatch""want mismatch"));;

Alternatively, or in addition:

Modify the migrate() interface to accept the previous want token as an argument, enabling explicit handling of non-matching tokens.
Require all strategy implementations to handle incompatible want() tokens by transferring the old want() funds back to a recovery address

(e.g., the vault) or another approved recovery handler.
In the vault logic, if the new strategy has a different want, do not transfer the old want to the strategy. Instead, keep the funds within the

vault and rely on the existing rescueTokens() functionality, which already disallows reclaiming the current want() but can recover other tokens.

For SolvVault and CoreVault contracts consider implementing a propose / ugprade system or make sure the new want() is the same as the
old strategy want() .
By implementing one or more of these safeguards, the upgrade path becomes resistant to misconfigured or malicious strategies and avoids
scenarios in which vault assets become irrecoverably locked.

Remediation Comment
SOLVED: Added want() token compatibility checks in proposeStrat() and upgradeStrat() functions.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/714bd1ec7e53dbe7404abbd1c956e2d994272c44

https://github.com/Nawa-Finance/nawa-core/commit/714bd1ec7e53dbe7404abbd1c956e2d994272c44

8 .7 Z A P I N D O ES N OT AC C O U N T FO R D E F L AT I O N A RY TO K E N S O R T R A N S F E R F E ES

// MEDIUM

Description
In the BitfluxZap contract, the zapIn function assumes that the full _amount specified by the user will be received by the contract when
executing:

TransferHelperTransferHelper..safeTransferFromsafeTransferFrom((tokenIntokenIn,, msg msg..sendersender,, addressaddress((thisthis)),, _amount _amount));;

Immediately afterward, it uses _amount directly when calling addLiquidity , assuming that the full value is available. However, if tokenIn is a
deflationary or fee-on-transfer token, the contract will receive less than _amount , causing one of two issues:
1. Underfunding: If the received amount is less than expected and addLiquidity attempts to use the original _amount , it may revert due to
insufficient balance.
2. Overdraw from leftovers: If the contract holds surplus of the same token from prior operations, the discrepancy may be silently covered
using leftover balance, causing another user’s excess tokens to be used for a new user’s operation.
This leads to unreliable behavior, potential cross-user fund leakage, and inconsistencies in how zap operations are executed across token
types.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (5.0)

Recommendation
Capture the actual amount received using token balance deltas before and after the transfer:

uint256uint256 before before == IERC20IERC20((tokenIntokenIn))..balanceOfbalanceOf((addressaddress((thisthis))));;
TransferHelperTransferHelper..safeTransferFromsafeTransferFrom((tokenIntokenIn,, msg msg..sendersender,, addressaddress((thisthis)),, _amount _amount));;

uint256uint256 after after == IERC20IERC20((tokenIntokenIn))..balanceOfbalanceOf((addressaddress((thisthis))));;
uint256uint256 actualReceived actualReceived == after after -- before before;;

Then use actualReceived for all liquidity logic instead of the original _amount . This ensures compatibility with deflationary tokens and
prevents the contract from unintentionally relying on pre-existing balances to fulfill user interactions.

Remediation Comment

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N

SOLVED: Incorporated logic to account for transfer fees and variable token deliveries.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/b4888eefce8a17e282d4a987bff30a9ef7cd2f34

https://github.com/Nawa-Finance/nawa-core/commit/b4888eefce8a17e282d4a987bff30a9ef7cd2f34

8 . 8 R E F E R R E R CA N B E S E L F O R OV E RWR I T T E N O N R E P E AT E D D E P O S I TS

// MEDIUM

Description
In the NawaVaultV2 contract, the _deposit function allows users to set a _referrer address during deposit without enforcing that it must
differ from msg.sender . This permits users to set themselves as their own referrer, which is likely unintended and may result in meaningless or
exploitative referral data in NawaReferrerV2 .
Additionally, the user.referrer value is overwritten on every deposit, regardless of whether a referrer was previously recorded. This behavior
contradicts standard referral mechanisms, where the referrer is typically locked on the first deposit. As a result, users may cycle through
different referrers across multiple deposits, leading to inconsistent or misleading rev-share tracking, particularly when revShareEnabled is
true and external accounting functions are triggered via _recordDepositRevShare or _recordWithdrawRevShare .

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (5.0)

Recommendation
Add a check to ensure _referrer is not equal to msg.sender to prevent self-referrals. To preserve the integrity of the referral system,
consider locking the referrer address on the user's first deposit and prevent it from being overwritten on subsequent deposits. This will ensure
consistent tracking for revenue-sharing and avoid state corruption or gaming of the referral system.

Remediation Comment
SOLVED: Added logic to prevent self-referrals and maintain consistent referral records.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/8927767663351a97a00527651b771361cb5989b0

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/8927767663351a97a00527651b771361cb5989b0

8 . 9 U N SA F E D I R EC T TO K E N T R A N S F E R

// MEDIUM

Description
In both NawaVault and NawaVaultUpgradable , the upgradeStrat function performs a direct ERC20 transfer when moving tokens from the
vault to the newly approved strategy. This approach does not utilize safeTransfer , which wraps the call and verifies the return value,
reverting on failure. Some non-compliant or proxy-wrapped tokens (including BNB derivatives or fee-on-transfer tokens) may return false or no
value at all without reverting, causing silent failures and inconsistent asset accounting.
Using raw transfer makes the upgrade process vulnerable to undetected token loss, leaving funds stuck in the vault or in limbo during a
strategy upgrade.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (5.0)

Recommendation
Replace all direct token.transfer calls within upgradeStrat with SafeERC20.safeTransfer to ensure proper low-level handling and reversion
on failure. This change guarantees that only successful transfers allow the strategy upgrade to proceed and protects user funds during the
handoff between strategies.

Remediation Comment
SOLVED: Replaced with SafeERC20.safeTransfer in upgradeStrat() .

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/e577f619d1b67b88d7e1b860ee7567d9a7367a98

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/e577f619d1b67b88d7e1b860ee7567d9a7367a98

8 .1 0 E A R N D O ES N OT FO RWA R D F U N D S I N TO AC T I V E ST R AT EGY

// MEDIUM

Description
In the NawaVaultUpgradable contract, the earn() function is meant to transfer available vault funds to the strategy for yield generation.
However, the current implementation only transfers the tokens to the strategy address:

IERC20UpgradeableIERC20Upgradeable((wantwant(())))..safeTransfersafeTransfer((strategystrategy,, bal bal));;

It does not follow up with a call to strategy.deposit() , which is required to actually deploy the funds within the strategy. As a result, when
earn() is called directly (e.g. by a keeper or automated bot), the funds remain idle on the strategy contract rather than being actively put to
work. This breaks the intended compounding mechanism and leads to reduced capital efficiency.
When the full flow is triggered from deposit() , the strategy does receive the deposit() call, ensuring the funds are utilized. However,
earn() is intended to be an explicit optimization hook, and its incomplete behavior introduces inconsistency and economic inefficiency.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (5.0)

Recommendation
Update the earn() function to include a call to strategy.deposit() immediately after transferring the funds:

IERC20UpgradeableIERC20Upgradeable((wantwant(())))..safeTransfersafeTransfer((strategystrategy,, bal bal));;
IStrategyIStrategy((strategystrategy))..depositdeposit(());;

This ensures consistent behavior between direct and internal flows, and guarantees that all funds sent to the strategy are immediately
activated. If the goal is to decouple fund transfer and strategy logic for modularity, it should be made explicit via naming (e.g.
flushToStrategy() vs earn()), and access should be controlled accordingly.

Remediation Comment
PARTIALLY SOLVED: Updated earn() function to call strategy.deposit() immediately after fund transfer. However, the _deposit function
does still have both earn() and then strategy.deposit() duplicating the call.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/ed1f7846252c7209d83a87b65b23499690fcd44c

https://github.com/Nawa-Finance/nawa-core/commit/ed1f7846252c7209d83a87b65b23499690fcd44c

8 .1 1 M I S S I N G R E E N T R A N CY P ROT EC T I O N O N E X T E R N A L CA L L PAT H S

// LOW

Description
In the CoreVault , NawaVaultV2 , and SolvZap contracts, multiple externally accessible functions interact with external contracts without
using a nonReentrant modifier or equivalent protection, exposing the system to reentrancy risks. These risks may not originate directly from
the vaults or zaps themselves but from the behavior of the connected contracts or tokens—especially in scenarios involving misbehaving
strategies, wrapped assets, or external protocol integrations.
In CoreVault , functions such as deposit , initiateUnbond , withdraw , and withdrawDirect interact directly with strategy contracts and
update state variables. If the connected strategy or token behaves maliciously or re-enters the vault, these functions may be called again
before internal state is safely finalized, leading to potential double-spending or accounting inconsistencies.
In NawaVaultV2 , the withdrawZap function performs complex interactions involving token transfers and potentially zap logic, but lacks the
nonReentrant protection found on its base withdraw function. This inconsistency increases the risk that certain withdrawal paths are
exposed to unexpected external behaviors.
In the SolvZap contract, the functions zapInWithWBTC() and zapInWithSolvBTCb() perform external calls to third-party protocols such as
bitfluxPool.swap() or solvStaking.createSubscription() . If any of these contracts behave in a reentrant fashion—intentionally or due to
internal logic bugs—there is no guard in place to prevent reentrant access to state or logic within the zap contract.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
Apply the nonReentrant modifier to all relevant external functions that:

Perform external calls (e.g., transfer, approve, deposit, external protocol invocations).
Update or rely on shared contract state that could be re-entered or manipulated mid-execution.

Specifically:

In CoreVault: Add nonReentrant to deposit, initiateUnbond, withdraw, and withdrawDirect.
In NawaVaultV2: Add nonReentrant to withdrawZap for consistency and protection.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

In SolvZap: Add nonReentrant to zapInWithWBTC and zapInWithSolvBTCb, as these call untrusted external systems.

For the earn() function in NawaVaultV2 , although it doesn’t change vault state, it sends tokens to a strategy and calls strategy.deposit() .
To minimize exposure in the event of a malicious or broken strategy, consider either restricting this function to a trusted role (e.g., onlyOwner ,
onlyKeeper) or protecting it with nonReentrant .
These changes ensure consistent enforcement of call protection across all high-risk execution paths and reduce the possibility of indirect
reentrancy vulnerabilities arising from connected contracts.

Remediation Comment
SOLVED: Applied nonReentrant modifier to affected functions.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/97525830792abd44c3924f1ee6a1441021df34f1

https://github.com/Nawa-Finance/nawa-core/commit/97525830792abd44c3924f1ee6a1441021df34f1

8 .1 2 U N N EC ES SA RY A N D U N SA F E R E P E AT E D A L LOWA N C E G R A N TS WI T H O U T

P RO P E R R EVO CAT I O N

// LOW

Description
In the BitfluxStrategy contract, the _giveAllowances function is invoked multiple times across various functions after the constructor,
including during routine execution of core actions like deposits and withdrawals. However, this is redundant and inefficient, as both want()
and LP_TOKEN() are immutable references without setters, and under the standard ERC20 implementation, once an allowance is set to
type(uint256).max , the allowance remains at maximum and does not decrease on transferFrom unless explicitly changed.
The repeated calls to _giveAllowances() introduce unnecessary gas consumption on each call path, with no functional gain, especially since
the approvals are already permanently set during the constructor. Furthermore, the approval mechanism does not include any corresponding
calls to _removeAllowances() after operations are completed, which leaves the allowances at their maximum regardless of intent—this
undermines any security argument for dynamic approval management.
In scenarios where security is a concern (e.g., a potentially unsafe or upgradable bitfluxPool), the strategy would benefit from temporary
approvals. However, in the current implementation, this logic is incomplete and misleading:

_giveAllowances is declared public , making it callable by any external actor. This violates encapsulation and exposes the contract to
external manipulation of approval state.

There is no _removeAllowances invoked post-operation, meaning approvals are never revoked.
The approval is overly broad: e.g., the deposit logic grants allowance to both want and LP_TOKEN , even though depositing does not require

use of the LP_TOKEN .

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
Refactor the allowance logic for clarity, efficiency, and security:
1. Restrict _giveAllowances visibility to internal or private to prevent external abuse.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

2. Avoid redundant approvals in core execution paths—if want and LP_TOKEN do not change and allowances are set in the constructor, no
further action is needed.
3. If dynamic approval is truly desired for risk isolation, implement a grantAllowance modifier that wraps sensitive operations:

 modifiermodifier grantAllowancegrantAllowance(()) {{

 _giveAllowances_giveAllowances(());;
 __;;

 _removeAllowances_removeAllowances(());;
 }}

1. Apply granular approvals only for tokens relevant to the operation—e.g., only approve want during deposit, not LP_TOKEN.
2. Keep _giveAllowances only in pause and unpause, where reinitializing allowance makes operational sense.
This approach maintains security boundaries, eliminates redundant gas usage, and clarifies the intent of token approval management.

Remediation Comment
SOLVED: Optimized allowance handling to avoid repeated gas consumption and potential attack vectors.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/a64367bf5eaf2ff502e01803dfaae2cb30349c08

https://github.com/Nawa-Finance/nawa-core/commit/a64367bf5eaf2ff502e01803dfaae2cb30349c08

8 .1 3 M I S S I N G T WO - ST E P OWN E RS H I P T R A N S F E R A N D U N SA F E

R E N O U N C EOWN E RS H I P

// LOW

Description
Multiple contracts in the system rely on the Ownable pattern to control privileged operations, but currently allow single-step ownership
transfers via transferOwnership . This introduces the risk of accidentally or maliciously setting an incorrect or invalid address as the new
owner, potentially rendering the contract permanently inaccessible from a governance perspective.
Additionally, the inherited Ownable implementation exposes the renounceOwnership function, which permanently removes the owner. If
unintentionally called, this would leave the contract without any privileged access, disabling upgrades, recovery paths, or administrative
controls, depending on the role of ownership in the specific contract.
This is particularly critical in upgradeable vaults and strategy contracts where ownership governs sensitive operations such as pausing,
upgrading strategies, or rescuing funds.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation
Replace the current ownership transfer mechanism with a two-step pattern (proposeOwner and acceptOwnership) to ensure the new owner
explicitly accepts the role before the transfer is finalized. Additionally, override and disable renounceOwnership to prevent accidental removal
of the owner role unless explicitly intended by governance design.

Remediation Comment
SOLVED: Implemented two-step ownership transfer and disabled renounceOwnership.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/58c9fd8245af62cc3e6d2eb09385a2564217e266

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/58c9fd8245af62cc3e6d2eb09385a2564217e266

8 .1 4 A D D I N G A VAU LT A L LOWS D U P L I CAT E D E N T R I ES WI T H O U T VA L I DAT I O N

// LOW

Description
In the NawaRegistry contract, the addVaults function appends new vault addresses to an internal array without checking for duplicates. This
allows the same vault to be registered multiple times, leading to inconsistent or redundant state when retrieving vault data or iterating
through the registry.
This design flaw can cause UI issues, unnecessary data inflation, or misinterpretation of vault statistics. Additionally, there is no gas efficiency
benefit to allowing duplicates, and failing to prevent them may complicate off-chain consumers or future registry logic.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation
Prevent duplicate vault entries by using a mapping(address => bool) to track registered vaults, or by adopting EnumerableSet from
OpenZeppelin, which provides an efficient and reliable way to manage unique sets of addresses.
For example:

EnumerableSetEnumerableSet..AddressSet AddressSet privateprivate _vaultSet _vaultSet;;

functionfunction addVaultsaddVaults((addressaddress[[]] calldatacalldata vaults vaults)) externalexternal onlyOwner onlyOwner {{

 forfor ((uint256uint256 i i == 00;; i i << vaults vaults..lengthlength;; i i++++)) {{
 ifif ((_vaultSet_vaultSet..addadd((vaultsvaults[[ii]])))) {{

 // Only add to array if not already present// Only add to array if not already present
 _vaultArray _vaultArray..pushpush((vaultsvaults[[ii]]));;
 }}

 }}
}}

This ensures vaults are registered once and simplifies downstream consumption of registry data.

Remediation Comment
SOLVED: Used EnumerableSet to enforce uniqueness of vault entries.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/df62f48da5b2ecd775f31ce1433da400964de2c0

https://github.com/Nawa-Finance/nawa-core/commit/df62f48da5b2ecd775f31ce1433da400964de2c0

8 .1 5 U N R EST R I C T E D ST R AT EG I ST AS S I G N M E N T CA N L E A D TO I N VA L I D RO L E

C O N F I G U R AT I O N

// LOW

Description
In the StratManager contract, the setStrategist function is callable by the current strategist , allowing them to unilaterally update the
role. However, this opens the door to misconfiguration, such as assigning the strategist role to an invalid address (e.g. address(0)), either
maliciously or by mistake. Since there are no access guards or validation on the new address, this may render the strategist role unusable or
break off-chain integrations relying on this role.
Moreover, the strategist address appears to be unused within the contract itself, making the role effectively inert and raising questions about
its relevance. If the role is intended to have operational authority in the future or in derived contracts, this weakness should be addressed
preemptively.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation
Restrict the setStrategist function to onlyOwner and validate the input to prevent assignment of invalid addresses:

functionfunction setStrategistsetStrategist((addressaddress _strategist _strategist)) externalexternal onlyOwner onlyOwner {{

 requirerequire((_strategist _strategist !=!= addressaddress((00)),, "Invalid address""Invalid address"));;
 strategist strategist == _strategist _strategist;;

}}

If the role is not being used or planned for future use, consider removing the strategist variable and function entirely to reduce unnecessary
surface area.

Remediation Comment
SOLVED: Restricted to allow only the owner to assign verified strategist addresses.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/c969c2b36f3876d528abeaf9ac2a50b841f9f161

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/c969c2b36f3876d528abeaf9ac2a50b841f9f161

8 .1 6 U N R E AC H A B L E A N D U N U S E D PAU S E A N D PA N I C F U N C T I O N A L I T Y

// INFORMATIONAL

Description
In the CoreVault , SolvStrategy , and SolvVault contracts, functions related to emergency handling such as pause() , unpause() , and
panic() are defined in the strategies but never called by their respective vaults. Additionally, the paused state variable is not referenced in
any of the contract logic, meaning there is no actual behavioral difference between paused and unpaused states.
As implemented, this renders the pause functionality non-functional (dead code), and emergency functions like panic() —which are designed
to withdraw funds back to the vault—cannot be triggered in practice. This is particularly problematic in a live environment where mechanisms
for responding to unexpected strategy failures, bugs, or external exploits must be callable in a timely and deterministic manner.
Furthermore, without proper linkage from the vault to the strategy, the access control guarding panic / pause (e.g. onlyVault) is ineffective,
and the emergency mechanisms remain inaccessible even to privileged actors.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:N/Y:N (1.8)

Recommendation
Implement proper hooks in the CoreVault , SolvVault , and any other owning vault contracts to expose pause() , unpause() , and panic()
functionality on their respective strategies. Additionally:

Ensure the paused state is actually enforced in relevant functions (e.g. block deposits, earnings, or withdrawals if paused).
Consider adding onlyOwner, onlyGovernance, or onlyEmergencyAdmin role checks to vault-level pause triggers if fine-grained access control is

needed.

This makes the emergency controls operational, enforceable, and aligned with the intended design for fault tolerance and safety.

Remediation Comment
RISK ACCEPTED: The risk of this finding was accepted.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:N/Y:N

8 .1 7 R E F E R R E R CA N B E S E L F O R OV E RWR I T T E N O N R E P E AT E D D E P O S I TS

// INFORMATIONAL

Description
In the NawaVaultV2 contract, the _deposit function allows users to set a _referrer address during deposit without enforcing that it must
differ from msg.sender . This permits users to set themselves as their own referrer, which is likely unintended and may result in meaningless or
exploitative referral data in NawaReferrerV2 .
Additionally, the user.referrer value is overwritten on every deposit, regardless of whether a referrer was previously recorded. This behavior
contradicts standard referral mechanisms, where the referrer is typically locked on the first deposit. As a result, users may cycle through
different referrers across multiple deposits, leading to inconsistent or misleading rev-share tracking, particularly when revShareEnabled is
true and external accounting functions are triggered via _recordDepositRevShare or _recordWithdrawRevShare .

BVSS

AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation
Add a check to ensure _referrer is not equal to msg.sender to prevent self-referrals. To preserve the integrity of the referral system,
consider locking the referrer address on the user's first deposit and prevent it from being overwritten on subsequent deposits. This will ensure
consistent tracking for revenue-sharing and avoid state corruption or gaming of the referral system.

Remediation Comment
SOLVED: The issue was solved.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

8 .1 8 M I S S I N G U P P E R BO U N D VA L I DAT I O N I N S E T R EVS H A R E F E ES

// INFORMATIONAL

Description
In both the FeeManager and StratFeeManager contracts, the setRevShareFees function allows fee values to be set without enforcing an upper
bound. This opens the possibility for misconfiguration or abuse, where the fee value could exceed 100% of the allocated revenue, leading to
incorrect or excessive fee deductions.
Each contract uses a fixed FEE_DIVISOR (e.g., 1e3 or 1e4) as the denominator for fee calculations, but there is no check to ensure the
configured fee is ≤ FEE_DIVISOR . As a result, a value higher than the divisor could produce unintended outcomes or revert downstream logic
when distributing rewards or fees.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (1.0)

Recommendation
Add a validation in setRevShareFees to enforce that the fee value is not greater than FEE_DIVISOR . For example:

requirerequire((_fee _fee <=<= FEE_DIVISOR FEE_DIVISOR,, "Fee exceeds maximum allowed""Fee exceeds maximum allowed"));;

This ensures predictable fee behavior, prevents misconfiguration, and upholds consistency across fee-bearing contracts.

Remediation Comment
SOLVED: The issue was solved.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

8 .1 9 R ES C U E A L LOWS WI T H D R AWA L O F C O R E ST R AT EGY AS S E T

// INFORMATIONAL

Description
In the DualCoreStrategy contract, the rescueToken function allows the contract owner to withdraw any ERC20 token from the strategy.
However, there is no restriction preventing the withdrawal of dualCoreToken , which is the primary asset managed by the strategy. Allowing
dualCoreToken to be withdrawn arbitrarily bypasses the strategy’s staking and unbonding mechanisms and poses a serious custodial risk.
If the owner mistakenly or maliciously calls rescueToken(dualCoreToken, ...) , they could remove funds that are actively bonded, awaiting
unbonding, or otherwise committed in the strategy’s flow. This undermines user trust and could disrupt accounting both in the vault and in the
external dualCoreVault .

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (1.0)

Recommendation
Add a conditional check in the rescueToken function to prevent the withdrawal of dualCoreToken :

requirerequire((_token _token !=!= addressaddress((dualCoreTokendualCoreToken)),, "Cannot rescue core token""Cannot rescue core token"));;

This ensures that only unrelated or accidentally sent tokens can be rescued, and the strategy's core asset remains protected under the proper
withdrawal flow.

Remediation Comment
SOLVED: The issue was solved.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

8 . 2 0 Z E RO A P P ROVA L D E L AY A L LOWS I M M E D I AT E ST R AT EGY U P G R A D E

// INFORMATIONAL

Description
In the NawaVaultV2 , NawaVaultUpgradable , and NawaVault contracts, the approvalDelay parameter is passed to the constructor without
requiring it to be non-zero. This value defines the minimum delay between calling proposeStrat and executing upgradeStrat . If
approvalDelay is initialized to zero, a malicious or compromised strategist can bypass the intended upgrade delay protection by immediately
proposing and upgrading a new strategy within the same transaction or block.
The delay mechanism is intended to serve as a time-based safeguard against rushed or malicious upgrades, giving governance or observers
time to react. A zero value effectively disables this protection.

BVSS

AO:S/AC:L/AX:L/R:P/S:U/C:N/A:L/I:N/D:N/Y:N (0.3)

Recommendation
Require a minimum non-zero value for approvalDelay during contract construction to enforce a meaningful delay window for strategy
upgrades. For example, reject values below a minimum threshold (e.g., >= 1 day) in the constructor to ensure the upgrade mechanism cannot
be executed instantly.

Remediation Comment
SOLVED: The issue was solved.

Remediation Hash
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:L/I:N/D:N/Y:N
https://github.com/Nawa-Finance/nawa-core/commit/e5ff35887f2abd83539f721ce50eb9ec9123447f

8 . 2 1 U N BO U N D E D A P P ROV E TO VAU LT E X P O S ES D UA LC O R E TO K E N TO E X T E R N A L

D R A I N

// INFORMATIONAL

Description
In the DualCoreStrategy contract, the unstake function calls dualCoreToken.approve(dualCoreVault, type(uint256).max) in order to pre-
authorize the vault to transfer tokens for efficiency. While this avoids repeated approval transactions for each unstake, it also introduces a
critical security risk.
If the DualCoreStrategy contract contains any vulnerability that allows an unauthorized or manipulated call to trigger a withdrawal or similar
interaction with the dualCoreVault , the vault could be exploited to drain the entire dualCoreToken balance held by the strategy. Because the
allowance is effectively unlimited, any faulty logic or reentrancy that gives control over the vault’s withdrawal pathway becomes significantly
more dangerous, with no cap on the potential damage.
This pattern also violates the principle of least privilege, granting full control to the external vault over valuable tokens even when most
interactions require only limited transfers.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Avoid setting an unbounded allowance unless the external contract is fully trusted, immutable, and does not expose any third-party-controlled
execution paths. Prefer approving only the specific amount needed at the time of unstake:

dualCoreTokendualCoreToken..approveapprove((dualCoreVaultdualCoreVault,, _amount _amount));;

Alternatively, reset the allowance to zero after each use if repeated approvals are undesirable and the vault allows re-approval. This ensures
tighter control over token flows and minimizes the risk surface in the event of misbehavior or compromise in either the strategy or the vault.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 2 U N AC C O U N T E D E T H R EC E I V E D O U TS I D E O F D E P O S I T F LOW

// INFORMATIONAL

Description
The CoreVault contract includes a receive() function that allows the contract to accept ETH directly. However, when ETH is sent via this
fallback mechanism, it bypasses the deposit() function entirely. As a result, no user accounting is performed, no shares are minted, and no
internal state is updated.
This design flaw creates a scenario where ETH can be unintentionally or maliciously sent to the contract and becomes unaccounted for. Since
the vault does not track these funds, they are effectively stuck—neither attributed to any user nor recoverable through standard withdrawal
mechanisms.
Moreover, the presence of a receive() function implicitly signals to users and integrators that direct ETH transfers are supported, which
contradicts the vault’s intended operational flow.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Restrict the use of the receive() function by enforcing that only the strategy contract (or other known internal address) may send ETH
directly to the vault, or otherwise revert all unsolicited transfers:

receivereceive(()) externalexternal payablepayable {{

 requirerequire((msgmsg..sender sender ==== addressaddress((strategystrategy)),, "Direct ETH transfer not allowed""Direct ETH transfer not allowed"));;
}}

Alternatively, remove the receive() function entirely if the strategy does not send ETH back via low-level transfers, forcing all ETH inflows to
go through the deposit() function, which handles user accounting properly.
This ensures consistency, prevents stuck funds, and avoids user confusion or integration errors.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 3 Z A P I N D O ES N OT VA L I DAT E VAU LT C O M PAT I B I L I T Y WI T H L P TO K E N

// INFORMATIONAL

Description
In the BitfluxZap contract, the zapIn function proceeds to add liquidity and then calls vault.depositZap() under the assumption that the
vault accepts the specific LP token produced by the liquidity pool. However, there is no validation to ensure that the vault's want() token
actually matches the expected lpToken .
If a misconfigured vault is passed—one that accepts a different want() token—the depositZap call may revert or, depending on the vault
implementation, silently accept the LP tokens without properly crediting the user. This creates a risk of:
1. Transaction reverts: If the vault performs validation inside depositZap , the call fails.
2. Fund lock/loss: If the vault accepts the tokens but does not recognize or credit them, the LP tokens remain locked in the vault, and the user
receives no vault shares in return.
The vulnerability is made worse if the vault’s depositZap logic changes in the future, or if multiple LP tokens are supported across vaults,
increasing the risk of incorrect token routing.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Add an explicit validation step in zapIn to ensure the vault is compatible with the LP token:

requirerequire((vaultvault..wantwant(()) ==== addressaddress((lpTokenlpToken)),, "Vault does not match LP token""Vault does not match LP token"));;

This guards against misconfiguration and ensures the zap flow is only used with vaults that are designed to accept the LP tokens being
deposited. Additionally, consider enforcing post-conditions, such as verifying that vault shares are minted for the user, to ensure no silent
failures occur during the deposit process.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 4 M I S S I N G S L I P PAG E L I M I T VA L I DAT I O N I N C O N ST RU C TO R

// INFORMATIONAL

Description
In the SolvZap contract, the setSlippageLimit function correctly includes a validation to ensure the provided slippage value does not exceed
the configured SLIPPAGE_DENOMINATOR . However, the constructor sets an initial slippage limit without performing the same bounds check. This
inconsistency allows deployment with an invalid or dangerously high slippage limit that would otherwise be rejected post-deployment.
This creates a gap in safety and consistency between initialization and runtime configuration. It may also introduce silent misconfigurations
that affect execution behavior during the contract’s initial usage.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Apply the same validation in the constructor as used in setSlippageLimit :

requirerequire((_slippageLimit _slippageLimit <=<= SLIPPAGE_DENOMINATOR SLIPPAGE_DENOMINATOR,, "Invalid slippage limit""Invalid slippage limit"));;

This ensures the slippage configuration is safe and bounded from the moment of deployment, preventing misbehavior in early interactions and
maintaining consistency in contract assumptions.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 5 U N U S E D STAT E VA R I A B L ES I N C R E AS E C O N T R AC T S I Z E A N D R E D U C E

C L A R I T Y

// INFORMATIONAL

Description
In the NawaVaultUpgradable contract, the declared state variables min , max , and zapAddress are not used anywhere in the contract logic.
These variables serve no operational purpose and appear to be remnants of a past implementation or placeholders for future features.
Leaving unused variables in deployed contracts results in:

Increased contract size and deployment cost.
Reduced readability and higher cognitive overhead during audits and maintenance.
Misleading expectations about available configuration or functionality.

This also creates confusion around whether the contract supports zap-based deposits or enforces participation bounds, which it currently
does not.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the unused min , max , and zapAddress state variables from the NawaVaultUpgradable contract unless they are explicitly reserved for
upcoming features. If they are intended for future use, add a comment clarifying that intent and ensure no dead logic is compiled into
production deployments.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 6 N O P R I C E- P E R- S H A R E LO G I C E N A B L ES Y I E L D D I L U T I O N V I A 1 :1 M I N T I N G

// INFORMATIONAL

Description
In both CoreVault and SolvVault , the deposit() function mints vault shares at a fixed 1:1 ratio to the amount deposited, without taking
into account the current value of the underlying assets managed by the strategy. This is done through logic such as:

_mint_mint((msgmsg..sendersender,, msg msg..valuevalue));; // CoreVault example// CoreVault example

There is no implementation of a dynamic share price or pricePerShare mechanism that adjusts based on the vault’s total underlying balance
relative to the total share supply. As a result, new users can deposit ETH and receive vault shares at par value, even if the vault has accrued
yield from a strategy, effectively enabling them to benefit from the strategy’s gains without having contributed to them.
This design flaw allows value siphoning and results in yield dilution for earlier depositors.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Introduce dynamic share issuance based on the vault's current total balance (underlying tokens plus those in strategy) and total supply.
Additionally, implement a getPricePerShare() view function to track and expose the current share value for front-end integration and user
transparency.
These changes are critical to protecting existing depositors from dilution, accurately tracking profit, and aligning the vault with industry-
standard yield vault patterns (e.g., Yearn, Beefy).

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 7 R E D U N DA N T U N BO N D I N G C H EC KS A N D D U P L I CAT E D WI T H D R AWA L

T R AC K I N G

// INFORMATIONAL

Description
In the CoreVault contract, the withdraw function enforces an internal unbonding delay using a hardcoded UNBONDING_PERIOD and a local
unbondRequests mapping to track user withdrawal eligibility. However, if the vault is integrated with DualCoreStrategy , the strategy already
maintains its own unbonding logic via pendingWithdrawals and validates withdrawal readiness using the isWithdrawalReady function.
This results in duplication of both time-based checks and state tracking between the vault and the strategy:

The vault checks whether block.timestamp >= request.unbondTime + UNBONDING_PERIOD .
The strategy separately tracks unbond timestamps and enforces readiness via isWithdrawalReady .

This layered validation is unnecessary and increases gas usage, code complexity, and the likelihood of mismatches between the two layers if
logic diverges. Moreover, if the strategy is trusted to handle unbonding delays, repeating those checks in the vault offers no additional safety.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Eliminate the redundant UNBONDING_PERIOD check and the unbondRequests mapping from the vault when working with DualCoreStrategy .
Instead, rely on the strategy’s isWithdrawalReady method to determine if a withdrawal is permitted. If early reverts are desirable at the vault
level, directly call require(strategy.isWithdrawalReady(msg.sender), "...") during withdraw . This reduces duplication and offloads time-
sensitive logic to the component already responsible for managing it.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 8 M I S L E A D I N G D EV C O M M E N T O N R E F E R R E R S E T T E R F U N C T I O N

// INFORMATIONAL

Description
In the NawaVaultV2 contract, the comment above the setter function for updating the NawaReferrer contract incorrectly states:

/// @dev Ability to change the zap address/// @dev Ability to change the zap address

However, the function modifies the reference to the NawaReferrerV2 contract, not a zap address. This can cause confusion for developers,
auditors, and integrators, especially in a system involving multiple zap-related components. Misleading comments reduce code maintainability
and increase the risk of misconfiguration.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Update the in-code comment to accurately describe the function’s behavior. For instance, change the line to:

/// @dev Ability to change the NawaReferrer contract address/// @dev Ability to change the NawaReferrer contract address

This improves clarity and avoids confusion between zap logic and referral logic.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 2 9 R E D U N DA N T OV E R F LOW C H EC K I N TO U I N T 2 4

// INFORMATIONAL

Description
The BytesLib library includes a require(_start + 3 >= _start, 'toUint24_overflow') check in the toUint24 function. This check is
intended to catch overflows in the addition of _start + 3 . However, the contract uses Solidity version >=0.8.0 , which includes built-in
overflow checking for arithmetic operations by default. As such, this manual check is redundant and has no functional effect beyond
unnecessary gas consumption.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the redundant require(_start + 3 >= _start, 'toUint24_overflow') check in toUint24 from the BytesLib library. Solidity 0.8+ will
automatically revert on overflow, and simplifying the code improves readability and saves gas.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 0 C O N F U S I N G WI T H D R AWA L F L AG N A M I N G A N D LO G I C

// INFORMATIONAL

Description
In the CoreVault contract, the boolean canWithdraw flag controls whether a user can withdraw funds after initiating an unbonding process.
However, the current naming and logic are counterintuitive:

canWithdraw is set to false when the user calls initiateUnbond , despite that action initiating the withdrawal process.
The withdraw function allows withdrawals only if canWithdraw is false , using the condition require(!request.canWithdraw, ...) .
After a successful withdrawal, canWithdraw is then set to true .

This inverted logic is misleading, as the variable name suggests that true should enable withdrawals, but the implementation treats false
as the signal to proceed. This naming mismatch introduces unnecessary confusion and increases the risk of errors.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Either rename the flag to hasWithdrawn to reflect its actual semantics, or restructure the logic so that canWithdraw being true correctly
signals eligibility to withdraw. Both options improve clarity and reduce the cognitive load for reviewers and developers.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 31 M I S L E A D I N G C O M M E N T I N H A RV EST R EG A R D I N G L P BA L A N C E LO G G I N G

// INFORMATIONAL

Description
In the BitfluxStrategy contract, the harvest function includes a comment stating that it will "log" the final LP token balance:

// log final lp balance// log final lp balance

However, there is no event emitted or actual logging performed—only a call to balanceOf(lpToken) is made. This comment is misleading and
may confuse maintainers or auditors into thinking the function is emitting stateful output when it is not.
Such inconsistencies reduce code clarity, especially in functions that handle sensitive operations like compounding or reporting yield, where
accurate recordkeeping is often expected.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Update or remove the misleading comment. If logging is intended, emit an appropriate event to record the final LP balance. For example:

emitemit LPBalanceReportedLPBalanceReported((IERC20IERC20((lpTokenlpToken))..balanceOfbalanceOf((addressaddress((thisthis))))));;

Otherwise, revise the comment to reflect that the balance is simply being read, not logged.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 32 U N U S E D C O R E TO K E N VA R I A B L E C R E AT ES AS S E T T Y P E A M B I G U I T Y

// INFORMATIONAL

Description
The CoreVault contract declares an immutable variable coreToken of type IERC20Upgradeable , suggesting that the vault is intended to
manage ERC20 tokens. However, both the deposit and withdraw functions operate using native ETH:

deposit is marked as payable and uses msg.value to handle incoming funds.
withdraw uses a low-level call to transfer ETH back to the user.

This inconsistency introduces ambiguity regarding the vault’s intended asset model. The presence of an ERC20 coreToken implies a token-
based system, yet no interactions with it exist in the logic. This can confuse developers, integrators, and auditors about the actual type of
asset held, and may lead to integration bugs, incorrect assumptions about ERC20 approvals, or misdirected user funds.
Additionally, the unused coreToken variable increases the contract's storage size unnecessarily and may be misleading during audits or
upgrades.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Clarify the asset model by either removing the unused coreToken variable if the vault is strictly designed to operate with native ETH, or fully
integrate it into the deposit and withdrawal logic if the vault is intended to work with ERC20 tokens. Consistency between the declared state
and operational logic is essential to avoid misinterpretation and design-level bugs.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 3 U N N EC ES SA RY P RO P O S E DT I M E AS S I G N M E N T I N U P G R A D EST R AT

// INFORMATIONAL

Description
In both NawaVault and NawaVaultUpgradable , the upgradeStrat function assigns a zero value to stratCandidate.proposedTime after the
strategy upgrade is completed. However, this reset operation is redundant because the check stratCandidate.implementation != address(0)
is already used to control the upgrade flow and prevent re-execution. Since resetting the timestamp has no functional effect beyond that
point, it incurs unnecessary gas costs and clutters the upgrade logic.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the stratCandidate.proposedTime = 0 assignment from the upgradeStrat function. The logic controlling strategy replacement is
already safeguarded by the implementation field, making this assignment redundant and inefficient.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 4 I N C O N S I ST E N T S L I P PAG E D E N O M I N ATO R P R EC I S I O N AC RO S S C O N T R AC TS

// INFORMATIONAL

Description
The contracts SolvZap , BitfluxZap , and FeeManager define different denominator values for slippage and fee precision calculations. For
instance, one uses SLIPPAGE_DENOMINATOR = 1e4 , while another uses 1e3 , and FeeManager also uses 1e3 as its basis for percentage logic.
This inconsistency introduces unnecessary complexity and increases the risk of misinterpretation or misconfiguration when reading,
maintaining, or integrating with these contracts.
Varying precision standards across contracts also create the potential for logic errors when shared parameters or configurations are passed
between systems (e.g. a 50 basis point slippage tolerance being interpreted as 0.5% or 5% depending on the denominator used).

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Standardize the denominator used for slippage and fee calculations across all contracts (preferably to 1e4 , representing basis points) to
ensure consistency, reduce ambiguity, and prevent subtle arithmetic bugs. Update associated logic to align with the chosen precision level,
and document the format clearly in each relevant contract.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 5 A D M I N F U N C T I O N A L I T Y N OT U S E D

// INFORMATIONAL

Description
The NawaRouter contract declares an admin variable that is never used throughout the entire contract logic. This creates unnecessary state
storage and can mislead developers or auditors into assuming there's administrative control or restricted functionality tied to this variable.
Moreover, it may imply a false security model where no such privilege exists in practice, or it could indicate incomplete or deprecated
functionality that was never properly removed.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the unused admin variable from the NawaRouter contract to reduce bytecode size, clarify contract intent, and avoid confusion around
administrative control. If the variable is reserved for future use, document it explicitly and protect it with access control logic.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 6 R E D U N DA N T U S E O F SA F E M AT H WI T H S O L I D I T Y 0 . 8 . X

// INFORMATIONAL

Description
Contracts such as NawaVaultV2 and others across the codebase make extensive use of the SafeMath library for arithmetic operations.
However, Solidity versions >=0.8.0 natively include built-in overflow and underflow protection, making the use of SafeMath unnecessary. This
redundancy adds minor bytecode bloat and decreases code readability without providing any additional security benefits.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the SafeMath import and its usage across all contracts compiled with Solidity 0.8.x or above. Native arithmetic operations (e.g. a +
b , a - b , a * b) are safe and revert on overflow/underflow by default in these versions.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . 3 7 I N C O R R EC T WI T H D R AWA L FA L L BAC K C H EC K CA N L E A D TO E T H T R A N S F E R

FA I L U R E

// INFORMATIONAL

Description
In the DualCoreStrategy contract, the fallback logic after calling dualCoreVault.withdraw() includes the following condition:

ifif ((received received ==== 00 &&&& addressaddress((thisthis))..balance balance << amount amount)) {{

 revertrevert((......));;
}}

This check is intended to detect failure scenarios where the strategy either receives no ETH or an insufficient amount to satisfy the
withdrawal request. However, the logic is flawed. The condition only reverts when both:
1. received == 0
2. address(this).balance < amount
This means if some ETH is received (received != 0) but the contract’s balance is still less than amount , the code continues, and the final
low-level .call{value: amount} will fail, as it attempts to transfer more ETH than the contract holds. This causes unexpected reverts and
breaks downstream logic.
Furthermore, the in-code comment does not accurately reflect the implemented logic, adding confusion during auditing or maintenance.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Fix the conditional to revert if either:

No ETH was received (received == 0), or
The contract's ETH balance is still insufficient to fulfill the request.

Update the condition to:

ifif ((received received ==== 00 |||| addressaddress((thisthis))..balance balance << amount amount)) {{
 revertrevert(("Insufficient ETH received from vault""Insufficient ETH received from vault"));;
}}

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

Alternatively, if the goal is to ensure that ETH was received and the total balance is insufficient, the logic should explicitly reflect that and be
documented accordingly:

ifif ((received received !=!= 00 &&&& addressaddress((thisthis))..balance balance << amount amount)) {{

 revertrevert(("Partial ETH received but not enough to fulfill withdrawal""Partial ETH received but not enough to fulfill withdrawal"));;
}}

Also update or clarify the in-code comment to accurately describe the intention and behavior of the fallback logic. This ensures that
withdrawal execution is predictable, and reverts happen before unsafe or doomed ETH transfers are attempted.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

8 . 3 8 R E D U N DA N T I N H E R I TA N C E A N D U N U S E D F E E LO G I C I N ST R AT EGY

// INFORMATIONAL

Description
The BitfluxStrategy contract inherits from both StratManager and FeeManager , yet the FeeManager contract itself already inherits from
StratManager , making the direct inheritance of StratManager redundant. Furthermore, none of the fee-related functionality provided by
FeeManager —such as fee variables or setter functions—is used within BitfluxStrategy . This suggests either an incomplete integration or
unnecessary inheritance that adds confusion and bloat to the contract structure.
Such design introduces ambiguity about whether fees are intended to be part of the strategy logic, and misleads developers into assuming fee
mechanisms are active when they are not. It also increases bytecode size and audit surface without functional benefit.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the direct inheritance from StratManager , and if fee distribution is not required in BitfluxStrategy , also remove the unused
FeeManager base contract. If fee functionality is planned for future use, document it explicitly and integrate its logic accordingly.

Remediation Comment
ACKNOWLEDGED: The finding was acknowledged.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the
codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code
modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

